Our life and problems of simplification

Prasenjit Jana
prasenjit_jana1@yahoo.co.in

Abstract

Simplification by different ways is used to find different numbers in different positions , which may be bounded or not. Any simplification can be a problem to find out new variables from known, by taking any number as fixed we get others. In a total problem we can set a simplification such that from there we can get another one. In our life if we set our problem as a relationship with other problems then after solving one problem we can solve others. Like below we can set simplification problems and solve them. $3+5[4-\{5+6-(7-8)\}]=3+5 x, x=4-y, y=5+6-z, z=7-8$. This is the actual thing that occurs in a simplification.

Our life and problems of simplification Again $x=4-y$ is a problem which is also not known. But if we know y then we get x and if we know x then we know y. So if one problem is solved then the other must be. Now we find the value of z $=-1$ at first then get the remaining y, x. But I think that if we take one value of x at first and get different values of z then the problem will be proper because the value of z is in open bracket (), so it can be changed. It will then be a new way of solving a problem. Now the simplification will be like below.

$$
3+5[4-\{5+6-(?)\}]
$$

$3+5 x, x=4-y, y=5+6-z, z=?$ (let) For $z=8, y=3, x=1$ and total value is 8
So the problem must be from two directions,one is from left to right and other from right to left. But any other person can solve by taking any part of the
problem first then solve. Now if ax+by+cz=k be a simplification where a,b,c ,k are constants then we can get a relationship of problems, where x, y, z are the problems. If we construct our problems with suitable form then we can solve the problem.
If we assign variables with different problems then we can get different simplification problems using those variables. Now for different rules of solving the problems assigned by us, make the simplification problem with different answers. General problems are made up with simple simplification but as the problem is rigid we use strong logical break up of the problem to get the sum of some small problems. So to solve a problem of rigid one we use new problems or create new problems whose sum is(or joining is) the rigid problem.
Let us take an example of this type of problem. Find the value of s where $s=u t+1 / 2 \mathrm{ft}^{\wedge} 2$. Now we find u from x and t. When $t=0$ the value of $u=x$ Again $t=$ time which is equal to the movement of a clock at various times kept in a variable n. Where n is the number of rotations of an hour or second hand. This example is a complex one but a more easy example will be like that.
When $s=a+2 b+k c$ then find the value of s. Then according to different problems we will set a problem to find a. Like $a=3 t$ and t belongs to $1,2,3\}, b=$ $2-5 t$, c belongs to $\{2,4\}, k=3$. So we can simplify any problem by breaking the problem into small problems.
When we can't solve any problem then we create that problem to other people's problem and if someone solves it then it is solved. Like $a=p+q+r$, if r is not known by us then set r as the problem of t and t is known to us the problem solved. Here r is an unknown function or problem and t is the operator by which we find r . This is also expressed as a simplification problem. We can create a problem with our own arrangements of operations. Like $2+4-6\left(6^{*} 8-3\right)$. It is a problem of simplification and we can say or assign that first do subtraction then multiply then add then in brackets so the solution changes. Like this problem of our real life can be expressed and solved in various ways.
If in a problem the variable taken at first to solve the simplification problem is called as predefined then our answer may be the same as the resulting answer will be the solution of that problem.

